欢迎光临
我们一直在努力

【原创】Java并发编程系列2:线程概念与基础操作

【原创】Java并发编程系列2:线程概念与基础操作

伟大的理想只有经过忘我的斗争和牺牲才能胜利实现。

本篇为【Dali王的技术博客】Java并发编程系列第二篇,讲讲有关线程的那些事儿。主要内容是如下这些:

  • 线程概念
  • 线程基础操作

线程概念

进程代表了运行中的程序,一个运行的Java程序就是一个进程。在Java中,当我们启动main函数时就启动了一个JVM的进程,而main函数所在的线程就是这个进程中的一个线程,称为主线程。
进程和线程的关系如下图所示:
file

由上图可以看出来,一个进程中有多个线程,多个线程共享进程的堆的方法区资源,但是每个线程有自己的程序计数器和栈区域。

线程基础操作

线程创建与运行

Java中有三种线程创建方式,分别为:继承Thread类并重写run方法,实现Runnable接口的run方法,使用FutureTask方式。
先看继承Thread方式的实现,代码示例如下:

public class ThreadDemo {
    public static class DemoThread extends Thread {
        @Override
        public void run() {
            System.out.println("this is a child thread.");
        }
    }
    public static void main(String[] args) {
        System.out.println("this is main thread.")
        DemoThread thread = new DemoThread();
        thread.start();
    }
}

上面代码中DemoThread类继承了Thread类,并重写了run方法。在main函数里创建了一个DemoThread的实例,然后调用其start方法启动了线程。

tips:调用start方法后线程并没有马上执行,而是处于就绪状态,也就是这个线程已经获取了除CPU资源外的其他资源,等待获取CPU资源后才会真正处于运行状态。
使用继承方式,好处在于通过this就可以获取当前线程,缺点在于Java不支持多继承,如果继承了Thread类,那么就不能再继承其他类。而且任务与代码耦合严重,一个线程类只能执行一个任务,使用Runnable则没有这个限制。
来看实现Runnable接口的run方法的方式,代码示例如下:

public class RunnableDemo {
    public static class DemoRunnable implements Runnable {
        @Override
        public void run() {
            System.out.println("this is a child thread.");
        }
    }
    public static void main(String[] args) {
        System.out.println("this is main thread.");
        DemoRunnable runnable = new DemoRunnable();
        new Thread(runnable).start();
        new Thread(runnable).start();
    }
}

上面代码两个线程共用一个Runnable逻辑,如果需要,可以给RunnableTask添加参数进行任务区分。在Java8中,可以使用Lambda表达式对上述代码进行简化:

 public static void main(String[] args) {
    System.out.println("this is main thread.");
    Thread t = new Thread(() -> System.out.println("this is child thread"));
    t.start();
}

上面两种方式都有一个缺点,就是任务没有返回值,下面看第三种,使用FutureTask的方式。代码示例如下:

public class CallableDemo implements Callable<JsonObject> {
    @Override
    public JsonObject call() throws Exception {
        return new JsonObject();
    }
    public static void main(String[] args) {
        System.out.println("this is main thread.");
        FutureTask<JsonObject> futureTask = new FutureTask<>(new CallableDemo());   // 1. 可复用的FutureTask
        new Thread(futureTask).start();
        try {
            JsonObject result = futureTask.get();
            System.out.println(result.toString());
        } catch (InterruptedException | ExecutionException e) {
            e.printStackTrace();
        }

        // 2. 一次性的FutureTask
        FutureTask<JsonObject> innerFutureTask = new FutureTask<>(() -> {
            JsonObject jsonObject = new JsonObject();
            jsonObject.addProperty("name", "Dali");
            return jsonObject;
        });
        new Thread(innerFutureTask).start();

        try {
            JsonObject innerResult = innerFutureTask.get();
            System.out.println(innerResult.toString());
        } catch (InterruptedException | ExecutionException e) {
            e.printStackTrace();
        }
    }
}

如上代码,CallableDemo实现了Callable接口的call方法,在main函数中使用CallableDemo的实例创建了一个FutureTask,然后使用创建的FutureTask对象作为任务创建了一个线程并启动它,最后通过FutureTask等待任务执行完毕并返回结果。
同样的,上面的操作过程适合于需要复用的任务,如果对于一次性的任务,大可以通过Lambda来简化代码,如注释2处。

等待线程终止

在项目中经常会遇到一个场景,就是需要等待某几件事情完成后才能继续往下执行。Thread类中有一个join方法就可以用来处理这种场景。直接上代码示例:

    public static void main(String[] args) throws InterruptedException {
        System.out.println("main thread starts");
        Thread t1 = new Thread(() -> System.out.println("this is thread 1"));
        Thread t2 = new Thread(() -> System.out.println("this is thread 2"));
        t1.start();
        t2.start();
        System.out.println("main thread waits child threads to be over");
        t1.join();
        t2.join();
        System.out.println("child threads are over");
    }

上面代码在主线程里启动了两个线程,然后分别调用了它们的join方法,主线程会在调用t1.join()后被阻塞,等待其执行完毕后返回;然后主线程调用t2.join()后再次被阻塞,等待t2执行完毕后返回。上面代码的执行结果如下:

main thread starts
main thread waits child threads to be over
this is thread 1
this is thread 2
child threads are over

需要注意的是,线程1调用线程2的join方法后会被阻塞,当其他线程调用了线程1的interrupt方法中断了线程1时,线程1会抛出一个InterruptedException异常而返回。

让线程睡眠

Thread类中有一个static的sleep方法,当一个执行中的线程调用了Thread的sleep方法后,调用线程会暂时让出指定时间的执行权,也就是在这期间不参与CPU的调度,但是该线程所拥有的监视器资源,比如锁还是不让出的。指定的睡眠时间到了后该函数会正常返回,线程就处于就绪状态,然后等待CPU的调度执行。

tips:面试当中wait和sleep经常会被用来比较,需要多加体会二者的区别。
调用某个对象的wait()方法,相当于让当前线程交出此对象的monitor,然后进入等待状态,等待后续再次获得此对象的锁;notify()方法能够唤醒一个正在等待该对象的monitor的线程,当有多个线程都在等待该对象的monitor的话,则只能唤醒其中一个线程,具体唤醒哪个线程则不得而知。
调用某个对象的wait()方法和notify()方法,当前线程必须拥有这个对象的monitor,因此调用wait()方法和notify()方法必须在同步块或者同步方法中进行(synchronized块或者synchronized方法)。

看一个线程睡眠的代码示例:

private static final Lock lock = new ReentrantLock();
public static void main(String[] args) {
    Thread t1 = new Thread(() -> {
       // 获取独占锁
       lock.lock();
       System.out.println("thread1 get to sleep");
        try {
            Thread.sleep(1000);
            System.out.println("thread1 is awake");
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    });
    Thread t2 = new Thread(() -> {
        // 获取独占锁
        lock.lock();
        System.out.println("thread2 get to sleep");
        try {
            Thread.sleep(1000);
            System.out.println("thread2 is awake");
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    });

    t1.start();
    t2.start();
}

上面的代码创建了一个独占锁,然后创建了两个线程,每个线程在内部先获取锁,然后睡眠,睡眠结束后会释放锁。执行结果如下:

thread1 get to sleep
thread1 is awake
thread2 get to sleep
thread2 is awake

从执行结果来看,线程1先获取锁,然后睡眠,再被唤醒,之后才轮到线程2获取到锁,也即在线程1sleep期间,线程1并没有释放锁。
需要注意的是,如果子线程在睡眠期间,主线程中断了它,子线程就会在调用sleep方法处抛出了InterruptedException异常。

线程让出CPU

Thread类中有一个static的yield方法,当一个线程调用yield方法时,实际就是暗示线程调度器当前线程请求让出自己的CPU使用,如果该线程还有没用完的时间片也会放弃,这意味着线程调度器可以进行下一轮的线程调度了。
当一个线程调用yield方法时,当前线程会让出CPU使用权,然后处于就绪状态,线程调度器会从线程就绪队列里面获取一个线程优先级最高的线程,当然也有可能会调度到刚刚让出CPU的那个线程来获取CPU执行权。
请看代码示例:

public static void main(String[] args) {
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 10; i++) {
            if (i == 8) {
                System.out.println("current thread: " + Thread.currentThread() + " yield cpu");
            }
            Thread.yield(); // 2
        }
        System.out.println("current thread: " + Thread.currentThread() + " is over");
    });

    Thread t2 = new Thread(() -> {
        for (int i = 0; i < 10; i++) {
            if (i == 8) {
                System.out.println("current thread: " + Thread.currentThread() + " yield cpu");
            }
            Thread.yield(); // 1
        }
        System.out.println("current thread: " + Thread.currentThread() + " is over");
    });
    t1.start();
    t2.start();
}

在如上的代码中,两个线程的功能一样,运行多次,同一线程的两行输出是顺序的,但是整体顺序是不确定的,取决于线程调度器的调度情况。
当把上面代码中1和2处代码注释掉,会发现结果只有一个,如下:

current thread: Thread[Thread-1,5,main] yield cpu
current thread: Thread[Thread-0,5,main] yield cpu
current thread: Thread[Thread-1,5,main] is over
current thread: Thread[Thread-0,5,main] is over

从结果可知,Thread.yiled方法生效使得两个线程分别在执行过程中放弃CPU,然后在调度另一个线程,这里的两个线程有点互相谦让的感觉,最终是由于只有两个线程,最终还是执行完了两个任务。

tips:sleep和yield的区别:
当线程调用sleep方法时,调用线程会阻塞挂起指定的时间,在这期间线程调度器不会去调度该线程。而调用yield方法时,线程只是让出自己剩余的时间片,并没有被阻塞挂起,而是出于就绪状态,线程调度器下一次调度时就可能调度到当前线程执行。

线程中断

Java中的线程中断是一种线程间的协作模式。每个线程对象里都有一个boolean类型的标识(通过isInterrupted()方法返回),代表着是否有中断请求(interrupt()方法)。例如,当线程t1想中断线程t2,只需要在线程t1中将线程t2对象的中断标识置为true,然后线程2可以选择在合适的时候处理该中断请求,甚至可以不理会该请求,就像这个线程没有被中断一样。
在上面章节中也讲到了线程中断的一些内容,此处就不再用代码来展开了。

Java并发编程大纲

继续附上Java编程的系统学习大纲以供参考:
Java并发编程.pngfile

【参考资料】

  1. 《Java并发编程之美》

本文由微信公众号【Dali王的技术博客】原创,扫码关注获取更多原创技术文章。
Dali王的技术博客

https://segmentfault.com/a/1190000022208646

赞(0)
未经允许不得转载:ITyet » 【原创】Java并发编程系列2:线程概念与基础操作
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址